

21st Century EVOH recycling study

> CEVAL

kura*ray*

2013 Recycling study

In cooperation with Nextek, <u>www.nextek.org</u>

- Nextek is a recognised consulting organisation in the field of recycling
- PP/EVOH/PP and HDPE/EVOH/HDPE recycling study on multilayer sheet and bottles was conducted
- First, Focus on PCR-PP* processing and thermoforming using up-to-date recycle stream
 - Description of the Process
 - Performance
 - Analysis
 - Summary

 Next, Multilayer HDPE/EVOH Packaging influence in Processing and Performance of Recycled HDPE for blow moulded articles was studied

* PCR = Post-Consumer Recycled

Recycling Study Stream

kuraray

Industrial Scrap

Analysis of multilayer PP/EVOH/PP sheet with 4 to 6% EVOH

Structure	(out) PP	Regrind	Adhesive	EVOH	Adhesive	Regrind	PP	TOTAL	
Thickness (μm)	287	326	36	82.8	33	442	282	1489	5.5%
Thickness (μm)	168	930	33	107.6	33	985	166	2423	4.5%
Thickness (μm)	491	668	47	125.0	44	717	419	2511	5.0%

Collection and Sorting

DUALES SYSTEM HOLDING

Thanks to the cooperation of Systech Company

- www.gruener-punkt.de
- www.systech-plastics.de

Observation:

• In the region of Germany studied, about **2% of plastic waste** is barrier packaging.

- In these 2% barrier packaging:
 - 90% is for meat packaging
 - The remaining 10% is pâté, ready meals, cheese and fish salad

Collection and Sorting

MARKET APPLICATIONS AND PERCENTAGE OF EVOH IN RECYCLING STREAMS:

- An assessment was made by Nextek based on available market data and material audits to establish a typical and maximum percentage of HDPE barrier packaging in the market.
- Manual sorting bale audit at Viridor Arundel in the UK

Sorting post-consumer waste

Different forms of PP/EVOH waste

Compounding and Decontamination

PCR-PP and 90%PCR-PP + 10% industrial scrap (PCR-pp,evoh)

 PCR-PP was compounded and pelletised on a multi-screw extruder at 260°C and then decontaminated for 6 hours 145°C vacuum in batch reactor.

 Dry blend of 90%PCR-PP + 10%
 industrial scrap was then compounded on a twin screw extruder for about 3 minutes at 240°C

 PCR-pp,evoh blend was then decontaminated for 6 Hours at 130 -140°C using vacuum batch reactor

• Melt index of the PCR-pp,evoh material suitable for sheet extrusion and thermoforming

Controlled time / temp / pressure is used during melt and solid phase to provide complete decontamination of PCR-PP and highest quality

Coextrusion and Thermoforming

EVAL Europe Technical Centre in Antwerp

PCR-PP,EVOH/EVOH thermoforming samples

Multilayer sheet PCR-pp,evoh(25)/PP and PCR-pp,evoh(25)/EVOH/PP

PCR-PP, EVOH thermoforming samples

0.5/1 and 1/1 samples were produced with monolayer sheet

Nice trays could be produced without issue

The Bottles

Co-EBM HDPE/EVOH

	ſ			

trial	Layer 1 (outer)	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6 (inner)
1	AR	AR	AR	AR	AR	AR
2	BR	BR	BR	BR	BR	BR
3	Virgin HDPE	Virgin HDPE	BR	BR	Virgin HDPE	Virgin HDPE
4	Virgin HDPE	Virgin HDPE	AR	AR	Virgin HDPE	Virgin HDPE
5	AR	AR	Tie	EVOH F101B		
6	BR	BR	Tie	EVOH F101B	A	
7	Virgin HDPE	Virgin HDPE	Tie	EVOH F101B		
8	Virgin HDPE	BR	Tie	EVOH F101B	Tie	Virgin HDPE
9	Virgin HDPE	AR	Tie	EVOH F101B	Tie	Virgin HDPE
$AB = Baggedad UDBE + \pm 0.25\% FVOU$						

 $AR = Recycled HDPE + \pm 0.25\% EVOH$

 $\mathsf{BR} = \mathsf{Virgin}\,\mathsf{HDPE} + \pm\,0.25\%\mathsf{EVOH}$

Performance of the samples (I)

Overall Migration tests conducted at SMITHERS PIRA

• Overall migration, by filling, into simulants iso-octane; exposure conditions 24 hours at 40°C as detailed in EU Regulation No 10/2011.

PCR-pp,evoh(100) monolayer		PCR-pp,ev	<u>/oh(25)/PP</u>	PCR-pp,evoh(25)/EVOH/PP		
Method	EN-1186-14 Migration into Iso-octane	Method	EN 1186-15 Migration into Iso-octane	Method	EN 1186-15 Migration into Iso-octane	
Replicates 1 2 3 Mean result Limit Tolerance	mg/dm ² 42.4 40.1 42.9 41.8 #40.0 #*1.2	Replicates 1 2 3 4 Mean result Limit	(rapid extraction) mg/dm ² 8.8 10.9 9.9 10.1 9.9 10.0	Replicates 1 2 3 4 Mean result Limit	(rapid extraction) mg/dm ² 4.8 4.9 6.5 3.9 5.0 10.0	

kurarav

- The samples are all OK for packaging food according to EU regulation 10/2011,
- EVOH provides efficient way to reduce Overall migration as functional barrier

Performance of the samples (II)

Mechanical properties of PCR-PP, EVOH with PCR-PP

 Notched Izod Impact strength of Injection moulded PCR-PP,EVOH(25) and PCR-PP pieces were determined; No difference observed (8 KJ/m²)

 Tensile test on 15mm wide strips cut out from the sheet (MD) was conducted. E-Modulus, Strain at Break and Maximum stress were determined.

 No difference with various loading PCR-pp,evoh in monolayer.

kurarav

Summary Recycling Study

EVOH impact on the Performance of Recycled PP and HDPE

• The use of **EVOH** in **multi-layer barrier packaging** for long-time food preservation does not affect the recycling possibilities or opportunities

- It has now been demonstrated that:
 - EVOH does not affect the recycling stream of PP and HDPE (polypropylene)
 - It brings new opportunities to recycle PCR-PP (or HDPE) even in the food packaging applications
- Indeed, the use of **EVOH as functional barrier** certainly opens new doors to the plastic industry
- Recycling codes used to identify the material from which an item is made, to facilitate easier recycling or other reprocessing:
 - #5 PP is applicable to PP/EVOH
 - #2 HDPE is applicable to HDPE/EVOH

PLANTICTM

Plantic™ Organic Recovery

PLANTIC[™]

PLANTIC™

 ✓ PLANTIC[™] is a fully biodegradable renewable sheet suitable for thermoforming applications (e.g. for packing foods and goods with water activity of 35% to 70%).

PLANTIC[™]

PLANTIC[™] CF (PLANTIC[™] + BioPBS) Compost Certifications

Vincotte Certifications:

■ PLANTIC[™] mono layer

Conclusion

Kuraray, with its global presence, supports the circular economy with an advanced product porfolio:

- EVAL[™] EVOH resins and monolayer film, ready to be produced from renewable resources and which allows the production of multilayer structures fully recyclable with no impact on polyolefin recycling streams, independently from the converting technologies
 → Recycling Stream value chain
- PLANTIC[™] CF films, Bio-sourced, Bio-Plastic, Bio-degradable and barrier film for advance packaging solutions
 - → Organic Waste value Chain
- Even more performant materials enabling downgauging, keeping efficiency for use, are being developed.

EVAL[™] and PLANTIC[™] for now and the future

Thank You

Special thanks to our partner Nextek (Edward Kosior , Kelvin Davies and Jonathan Mitchell) and to our EVAL Technical Centre colleagues in Antwerp

Ing. Didier Houssier	kuraray
Market Development Director Product Steward Coordinator	Didier.houssier@kuraray.com
Eval Europe nv	T: +32 3 250 97 51
Keetberglaan 1B – Haven 1087 9120 Melsele (Antwerp)	F: +32 3 250 97 04
Belgium	www.evalevoh.com www.kurarister.com www.genestar.eu www.plantic.com.au

